Обращаем внимание, что с 1 сентября изменятся наши контакты для связи: тел. 8-495-269-62-22, адрес: ул. Минская, 2Ж

3D-принтер vs станок с ЧПУ: конкуренты или союзники?

materialise-metal-3dp-vs-cnc-pv
Алексей Чехович
materialise-metal-3dp-vs-cnc-pv

Преимущества 3D-печати металлом уже давно знакомы большинству специалистов: сокращение количества отходов, повышение эффективности производства и расширение функциональных возможностей благодаря большей свободе проектирования и гибкости. В то же время, высокая повторяемость при крупносерийном производстве и прецизионная обработка поверхностей (особенно когда речь идет о жестких допусках) – возможности, которые прочно ассоциируются с обработкой на станках с ЧПУ. Но что, если конкуренции не будет и выбирать из двух технологий не придется?

Инго Уккельманн, главный инженер по 3D-печати компании Materialise, рассказывает, почему эти технологии могут (и должны) дополнять друг друга, а не конкурировать между собой.

– Принято думать, что 3D-печать лучше подходит для изготовления металлических деталей, чем другие технологии, в том числе ЧПУ-обработка. Так ли это на самом деле?

– Нет. Это распространенное заблуждение. 3D-печать металлом, как и любая другая производственная технология, имеет преимущества и недостатки, которые нужно оценивать применительно к каждой конкретной задаче. Суть в том, что эта технология предлагает производителям просто еще один способ производства.

Если сравнивать 3D-печать с ЧПУ-обработкой, налицо несколько фундаментальных различий. Cтанки с ЧПУ используют субтрактивный процесс, а это означает больший расход материала. Если стоимость материала высока (а в случае с металлами, как правило, это так), то сокращение его расхода само по себе становится серьезным преимуществом.

Платформа металлического 3d принтера

Далее, станок формирует поверхность детали с помощью резца. Если подходящего инструмента нет – например, в случае с поднутрениями, – для его создания запускается еще один производственный процесс. В процессе обработки деталь должна быть надежно зафиксирована, а резец – иметь доступ ко всем ее поверхностям. Иногда это не под силу даже пятикоординатному станку. Также большинство резцов имеет цилиндрическую форму, и обеспечить идеальное исполнение углов проблематично. Вертикальные внутренние углы всегда будут скруглены – кроме тех случаев, когда используется поднутрение.

3D-печать это аддитивный процесс, и для нее не требуется никаких специальных инструментов, кроме поддержек. Обработка углов и кромок не представляет сложности. С помощью 3D-печати можно изготавливать детали сложной геометрии, в том числе с внутренними каналами и полостями это позволяет снизить вес изделий и расширить область их применения. При использовании 3D-принтера необходимость в изготовлении физических инструментов исчезает, уступая место программному обеспечению.

Многие производители думают, что обязательно нужно выбирать одну из двух технологий! На самом деле, можно добиться выдающихся результатов, правильно используя преимущества обеих.

Но ведь эти преимущества не означают, что 3D-печать всегда лучше?

Конечно. У станков с ЧПУ тоже есть свои плюсы, и один из них высокая точность, до нескольких микрон по каждой оси, что позволяет получать идеальные поверхности без дополнительной обработки. В том, что касается погрешностей, ЧПУ-обработка также обычно превосходит 3D-печать ведь нагревать и заново формовать материал не требуется. Кроме того, станки с ЧПУ отлично подходят для конечных деталей из тяжелых материалов.

Когда нет проектных требований, делающих 3D-печать необходимостью (внутренние каналы, сложная геометрия, снижение веса, монолитные конструкции и т.д.), субтрактивная обработка оказывается более привлекательной для мелкосерийного производства с точки зрения скорости, стоимости.

Проблема в том, что многие производители думают, что обязательно нужно выбирать одну из двух технологий! На самом деле, можно добиться выдающихся результатов, правильно используя преимущества обеих.

– Можете привести примеры? Как производители могут использовать обе технологии одновременно?

– Я уже говорил о допусках. В автомобилестроении, авиакосмической промышленности и других отраслях, где требуется высокая точность изготовления металлических деталей, невозможно обеспечить допустимые погрешности, используя только 3D-печать. С другой стороны, выгоды 3D-печати в подобных случаях – возможность снизить массу и улучшить эргономику деталей. Обрабатывая напечатанные детали на станках с ЧПУ, производители «убивают двух зайцев»: в некоторых случаях можно добиться погрешности ±0,005 мм.

При жестких допусках необходима идеальная обработка поверхности, особенно когда критически важна абсолютно точная подгонка деталей. В таких ситуациях можно печатать детали с запасом по размеру, а затем обрабатывать их, например, на пятикоординатном фрезерном станке с ЧПУ, добиваясь требуемой точности.

3d печать металлом

Материалы представляют собой отдельное преимущество. Раньше 3D-принтеры зачастую не могли обеспечить надлежащие механические характеристики (прочность, коррозионную стойкость, теплоизоляционные свойства) титана, алюминия, инконеля или нержавеющей стали. Теперь же эти материалы, а также множество других сплавов и суперсплавов в полной мере доступны для 3D-печати. Используя станки с ЧПУ для высокоточной постобработки напечатанных изделий, инженеры-разработчики получают гораздо большую гибкость в работе с уже известными им материалами.

Важно не забывать и такой момент. 3D-печать открывает новые возможности для оптимизации конструкции; аналогично, файлы, предназначенные для 3D-печати, можно оптимизировать для станков с ЧПУ, что позволяет дополнительно сэкономить. Повороты, перемещения, сложный и долгий технологический процесс, специальные крепления – все известные недостатки ЧПУ-обработки при использовании 3D-печати устраняются полностью. 3D-принтер выполняет основную работу, создавая изначальную конструкцию, а конечная обработка (типа нарезки точной резьбы) – простой, но очень важный этап производства – остается за станками с ЧПУ.

И, наконец, 3D-печать металлических деталей с последующей обработкой на станках с ЧПУ часто намного быстрее и дешевле создания новой пресс-формы для литья под давлением. Добавьте к этому преимущества работы с CAD-моделями — и сразу станет ясно, почему эта «звездная пара» технологий привлекает внимание производителей.

– Оба производственных метода используют цифровые технологии. Значит ли это, что их проще объединить в один процесс?

– Несомненно. Если предполагается ЧПУ-обработка, повысить эффективность процесса можно при проектировании деталей для 3D-печати. Настройки данных сразу приводятся в строгое соответствие с требованиями ЧПУ, и это позволяет ускорить производство и финишную обработку. Интеграция позволяет устранить задержки, неизбежные при использовании двух отдельных решений. Общее время 3D-печати и фрезеровки детали сокращается до 12 рабочих дней!


Материал предоставлен компанией Materialise
Фото в заставке © cookelma / Getty Images/iStockphot

Хотите увидеть лучшие примеры оптимизации производства с использованием 3D-печати готовых металлических изделий? Скачайте нашу обновленную бесплатную брошюру:

Внедрение 3D-печати металлами на производстве

Радиаторная решетка за 3 дня? Посмотрите, как это делает ProtoFab SLA1600
3D-технологии на взлете: тренды и задачи российского авиапрома

Об авторе

Алексей Чехович
Алексей Чехович

Главный эксперт направления технической поддержки 3D-оборудования. Девиз Алексея – «Доверяйте профессионалам!», и вы в полной мере можете положиться на его высокую квалификацию и уникальный опыт, который охватывает и традиционные методы производства, и 3D-технологии. В его послужном списке множество успешных проектов, среди которых он особо выделяет изготовление модельной оснастки для отливки колоколов Храма Христа Спасителя. Хобби Алексея – история и археология.

Читайте также
7 признаков того, что для контроля качества вам нужен 3D-сканер
7 признаков того, что для контроля качества вам нужен 3D-сканер
Анализ рынка: 70% компаний планируют увеличить инвестиции в 3D-печать
Анализ рынка: 70% компаний планируют увеличить инвестиции в 3D-печать
Метрология и реверс-инжиниринг: мост из прошлого в будущее
Метрология и реверс-инжиниринг: мост из прошлого в будущее

Оставьте комментарий