3D–решения
для промышленности и бизнеса
Блог 3D–экспертов
+7 (495) 26-96-222 info@iqb.ru

Мы в социальных сетях:

Аддитивные технологии в медицине: как снизить риски для здоровья пациентов

Преимущества аддитивных технологий для медицины
Что можно напечатать на 3D-принтере, чтобы повысить эффективность лечения
3D-сканеры и программное обеспечение в медицине  
Планирование успешной операции с помощью точных макетов
Печать макетов, моделей и прототипов из пластиков
3D-печать протезов и имплантатов из металла
Как уменьшить риски при проведении операций: практические примеры 3D-печати 
Аддитивные технологии в медицине: взгляд в будущее

В XXI веке в медицине реализовались многие научные идеи, которые когда-то казались фантастикой, – например, роботохирургия или бионические конечности. Немалая заслуга в недавних успехах медицины принадлежит аддитивным технологиям. Сегодня на 3D-принтере изготавливают модели частей тела и протезы, а в обозримом будущем обычной практикой станет 3D-печать искусственных органов и лекарств.

По данным отчета Wohlers Report 2018, медицина занимает 11,3% мирового рынка аддитивного производства. Согласно исследованию компании Market Research Future (MRFR), совокупные темпы годового роста глобального рынка 3D-печати медицинских устройств в 2018-2023 годах оцениваются в 18%.

Один из ключевых факторов в медицине – точность, ведь малейшая ошибка в расчетах может иметь фатальные последствия. И здесь 3D-печать подходит как нельзя лучше, ведь главные преимущества этой технологии – свобода проектирования и высокая точность при создании конечных продуктов. По сравнению с традиционными методами, возможность печати уникальных единичных или мелкосерийных изделий со сложной геометрией открывает путь к более быстрому и экономичному производству.


Приглашаем на бесплатный вебинар:

Зарегистрируйтесь по ссылке и получите экспертный материал в подарок!


3D печать в медицине
Фото: Materialise

Преимущества аддитивных технологий для медицины

  1. Высокая точность, позволяющая учесть индивидуальные особенности человека.
  2. Возможность создания конструкций любой сложности.
  3. Облегчение веса напечатанных изделий.
  4. Сокращение сроков производства (в том числе за счет отсутствия оснастки), и как следствие – ускорение оказания медицинской помощи.
  5. Экономия трудовых и материальных ресурсов.
  6. Снижение себестоимости изделий.
  7. Большой выбор инновационных материалов.

«Можно сделать индивидуальный протез для каждого конкретного пациента, – говорит Павел Вопиловский, Директор НТК «Машиностроительные технологии» СПбПУ Петра Великого, – это наиболее значимый фактор в использовании именно этой технологии (3D-печати – ред.) для медицины. Нет двух одинаковых человек, и, даже если взять тазобедренный сустав, справа и слева, это будут разные кости».


Ваше медицинское учреждение заинтересовано во внедрении 3D-технологий? Закажите бесплатные тестовые услуги 3D-сканирования и 3D-печати!

Оставить заявку


Что можно напечатать на 3D-принтере, чтобы повысить эффективность лечения

  • Макеты органов, тканей и костей при планировании операций;
  • протезы, имплантаты, хирургические шаблоны в хирургии и стоматологии;
  • ортопедические стельки, корсеты и другие ортезы;
  • слуховые аппараты;
  • мастер-модели для медицинских изделий;
  • прототипы корпусов медицинских приборов;
  • продукция медицинской косметологии.

3Д-сканирование и программное обеспечение в медицине

3D печать в медицине
Контроль геометрии отсканированной челюсти в ПО Geomagic Control X / Фото: researchgate.net

Наряду с 3D-печатью в медицине новые возможности открывают технологии 3D-сканирования и 3D-моделирования. С помощью 3D-сканера можно за считанные минуты получить точную трехмерную модель нужного объекта (кости, стоматологического слепка и т.д.), затем обработать полученные данные в специальном программном обеспечении и напечатать модель или готовое изделие на 3D-принтере, либо изготовить его традиционным способом. При этом отпадает необходимость хранить слепки и образцы – все 3D-модели сохраняются в цифровом архиве. При необходимости их можно оперативно откорректировать и переслать по интернету коллегам в любую точку Земного шара.

Планирование успешной операции с помощью точных макетов

Создание точных 3D-моделей костей, частей тела, тканей или органов позволяет провести наглядную демонстрацию патологий в масштабе 1:1. Врач может точно оценить размер патологии и расположение прилегающих тканей перед началом операции. В случае пересадки трехмерные модели помогают разработать подробные и индивидуальные планы операций и подобрать точно подходящие органы.

Макет, напечатанный на 3D принтере
Типичный пример 3D-печати в медицине: предоперационный макет из фотополимера, изготовленный в нашем демозале на принтере ProtoFab / Фото: iQB Technologies

Детализированная модель, напечатанная на 3D-принтере, и ее анатомически оптимальное положение помогают хирургу при сверке на всех ключевых этапах операции. Точное позиционирование патологии и кровеносных сосудов в режиме реального времени дает возможность повысить эффективность операции и снизить риски.

Изменение напечатанных анатомических моделей в соответствии с фактическим состоянием органов – один из важнейших методов применения 3D-технологий. Такая возможность не только экономит ценное время хирургов, но и повышает точность прогнозирования болезней.

Печать макетов, моделей и прототипов из пластиков

3D печать медицинских изделий
Создание кастомизированных стелек с помощью 3D-принтера Sharebot Q, который помог достичь великолепных результатов со сложными в использовании гибкими эластомерами

Производительное и экономичное решение для создания предоперационных макетов и моделей медицинских изделий – 3D-печать из пластиков. Существует несколько технологий пластиковой печати, в том числе моделирование методом послойного наплавления (FDM), лазерная стереолитография (SLA), селективное лазерное спекание (SLS). Первая из них использует в качестве расходного материала термопластиковую нить или гранулы, вторая – фотополимерную смолу, третья – полиамидные или модифицированные порошки. 

FDM-, SLA- или SLS-принтер станет выгодным решением для предприятий, выпускающих медицинскую технику: быстрое прототипирование корпусов приборов с помощью аддитивных технологий в несколько раз ускоряет процесс разработки продукта.

Своим практическим опытом применения 3D-печати в медицине делятся специалисты компании ProtoFab, производящей широкий ассортимент SLA-принтеров и материалов:


Процесс 3Д-печати в медицине

  1. Сбор данных пациента с использованием различных технологий (КТ, МРТ, УЗИ, ПЭТ, 3D-сканирование).
  2. По результатам исследований выбирается целевая область и создается 3D-модель в программном обеспечении.
  3. На базе созданной 3D-модели печатается точная копия объекта.
  4. На напечатанной модели моделируется хирургическая операция.

Эксперты iQB Technologies рекомендуют статью: Профессиональные 3D-принтеры Sharebot: воплотите свои самые смелые идеи
cta

3D-печать протезов и имплантатов из металла

Для изготовления протезов и имплантатов используются разные технологии и материалы – от пластиков до металлов. 3D-печать металлами позволяет создать изделие с заданной сложной геометрией, идеально подходящее конкретному пациенту. Топологическая оптимизация в сочетании с этой аддитивной технологией решает такие важные для протезирования задачи, как:

  • создание цельнометаллической конструкции любой необходимой формы;
  • облегчение веса протеза;
  • повышение прочности изделий за счет микроскопических полостей, которые обеспечивают миграцию собственных клеток костной тканей больного;
  • создание протезов с пористой структурой, способствующей более быстрому вживлению.
Протез, созданный по технологии 3D печати металлом
Фото: Materialise

3D-печать из металлических сплавов (в первую очередь – титановых) используется при протезировании костей челюстно-лицевой области, межпозвоночных дисков, ключиц, коленных суставов, лопаток, тазобедренных костей. В стоматологии: они применяются для изготовления цельных имплантатов, а также металлических основ коронок и мостов из титана, кобальт-хрома и других сплавов.

Наиболее важными особенностями протезов, созданных с помощью 3D-печати металлами, являются идеальная точность их соединения с телом и отсутствие реакции отторжения. Создание протезов на 3D-принтере обходится дешевле и требует меньше времени, чем любая традиционная технология.


Идеальное решение для стоматологии: Доступный 3D-принтер по металлу? Встречайте Sharebot MetalONE!

Как уменьшить риски при проведении операций: практические примеры 3D-печати в медицине

Институт травматологии и ортопедии им. Р.Р. Вредена совместно с ЛЭТИ (Санкт-Петербург) провели работу по созданию и 3D-печати протеза тазобедренного сустава из титана. На основе КТ был создан пластиковый макет кости. Следующий этап – проектирование имплантата и корректировки по его позиционированию на кость. Затем, после того как врачи провели планирование операции на макете, протез был напечатан на 3D-принтере. Пациент, у которого в результате травмы был практически разрушен тазобедренный сустав, встал на ноги.

Модели кровеносного сосуда и аневризмы
Модели кровеносного сосуда и аневризмы / Фото: ProtoFab

Важнейшую роль для полноценной эмболизации внутричерепной аневризмы играют устойчивое положение микрокатетера и его оптимальная форма. С помощью 3D-принтера можно напечатать модели кровеносного сосуда и аневризмы, которые помогут хирургу лучше понять анатомическую структуру. Правильная формовка микрокатетера при внутричерепной аневризме – сложный процесс, и врачам, которые в первый раз сталкиваются с данной методикой, необходимо длительное обучение. Для наглядной демонстрации кровеносных сосудов и аневризмы можно использовать модель, напечатанную на 3D-принтере в натуральную величину.

Модель для систем моделирования операций
Напечатанные на 3D-принтере модели для систем моделирования операций реалистично отображают сложную систему кровеносных сосудов / Фото: ProtoFab

В сравнении с моделями сосудов из ABS-пластика силиконовые модели более точно соответствуют кровеносным сосудам человека. 3D-печать позволяет «скопировать» сложную геометрию сердца пациентов с цереброваскулярными болезнями и мгновенно передать сведения в ПО.

Напечатанный хирургический шаблон
Напечатанный хирургический шаблон / Фото: ProtoFab

Традиционно для планирования остеотомии используются рентгеновские снимки. Однако на двухмерных снимках не отражается фактическое состояние костей. В связи с этим 60% операций не дают положительный результат. Решить данную проблему помогут 3Д-шаблоны, напечатанные компанией Materialise. Производство таких шаблонов не требует больших затрат, и они доступны всем пациентам.

3D печать для медицинских учреждений в компаниях iQB и TWIZE
26 октября 2019 года iQB Technologies и наш партнер TWIZE приняли участие в медицинской конференции «Живая артроскопическая хирургия тазобедренного сустава» в Государственной клинической больнице имени В.М. Буянова. Мы представили предоперационные макеты, напечатанные на фотополимерном 3D-принтере ProtoFab на основе данных компьютерной томографии.

Аддитивные технологии в медицине: взгляд в будущее

Благодаря инновациям, о которых мы рассказали в этой статье, удается повысить надежность операций, сэкономить время, снизить производственные расходы и стоимость конечных изделий, а главное – улучшить и продлить жизнь пациентов.

В последние годы уделяется все большее внимание 3D-печати в медицине и ее преимуществам – высокой точности, производительности и возможностям кастомизации. Наряду с совершенствованием 3D-оборудования ведется активная работа по созданию новых материалов для медицины. С помощью аддитивных технологий можно будет, к примеру, напрямую печатать изделия из керамики, а также создавать цельные зубные протезы, включая зубы и десны, из биосовместимых материалов.

Пример 3D биопечати
В 2019 году израильские ученые впервые создали на 3D-принтере человеческое сердце с кровеносными сосудами и клеткам. Сделано оно было в миниатюре, но, по словам исследователей, для печати сердца обычного размера может быть использована та же самая технология. Напечатанный орган состоит из жировых клеток пациента, которые были преобразованы в стволовые клетки сердечно-сосудистой мышцы, а затем смешаны с соединительной тканью и помещены в 3D-принтер / Фото: jta.org

Направление современной медицины, с которым связывают прорыв в лечении болезней и патологий в обозримом будущем, – 3D-печать тканей, кровеносных сосудов и органов, или 3D-биопринтинг. Ведущие научные и медицинские центры разрабатывают новые технологии и проводят клинические исследования в этой области.

Достижения аддитивных и биомедицинских технологий будут способствовать развитию бионического моделирования и 3Д-печати тканей и органов, что позволит сохранить здоровье и спасти жизни огромному числу людей.

В нашем блоге мы продолжим знакомить вас с темой внедрения 3Д-печати в медицине. Следите за публикациями!

cta

Статья опубликована 15.11.2019 , обновлена 30.11.2020